12-03-2024, 03:06 PM
<h2> Using the Balanset-1A Instrument </h2>
<h3> Getting the Equipment Ready </h3>
<ul>
<li> Ensure the instrument is complete with all necessary components: vibration transducers, laser tachometer, magnetic stand, software, and other accessories. </li>
<li> Connect the device to your PC using the USB interface and confirm the software installation. </li>
</ul>
<h3> Mounting the Sensors </h3>
<ul>
<li> Attach the vibration sensors firmly to the machine casing in areas with the highest vibration amplitude, usually close to the bearing supports. </li>
<li> Aim the optical rpm sensor at the rotating shaft and apply a reflective strip to the shaft for phase angle data acquisition. </li>
</ul>
<h3> Software Startup </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Choose the correct balancing method (single or two-plane) according to the rotor configuration and the balancing task. </li>
</ul>
<h3> </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Operate the rotor at its intended working speed. </li>
<li> The program will record the vibration amplitude, rpm, and phase, providing a baseline measurement of the existing imbalance. </li>
</ul>
<h3> Mounting the Test Weight </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Halt the rotation and mount a test weight at a designated position on the rotor, with the weight's value entered into the software (usually in grams). </li>
<li> Restart the rotor, and the software will record the changes in vibration level and phase angle. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Computing the Compensating Weight </h3>
<ul>
<li> Based on the measured data, the software automatically calculates the correction weight parameters: mass and installation angle. </li>
<li> The calculated values are presented on-screen in both numerical and graphical formats. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Attaching the Corrective Mass </h3>
<ul>
<li> Attach the computed compensating weight to the rotor as indicated by the software's output. </li>
<li> You can conduct interim measurements to confirm that the imbalance is decreasing as expected. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Validation and Conclusion of the Balancing Process </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> The balancing procedure is finished if the remaining vibration is within the permissible limits specified in ISO 1940. </li>
<li> If the vibration is still outside acceptable limits, reiterate the process and fine-tune the compensating weight. </li>
</ul>
<h3> Report Generation </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Final Recommendations </h3>
<ul>
<li> Verify the secure attachment of all balancing weights and measurement sensors. </li>
<li> Ensure the rotor rotates smoothly and without excessive noise. </li>
<li> If the rotor operates within a larger assembly, check the functionality and interplay of all interconnected parts. </li>
</ul>
<p> This process allows for precise imbalance correction, reducing vibration and extending equipment life. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Balancing of pulley </a>
<h3> Getting the Equipment Ready </h3>
<ul>
<li> Ensure the instrument is complete with all necessary components: vibration transducers, laser tachometer, magnetic stand, software, and other accessories. </li>
<li> Connect the device to your PC using the USB interface and confirm the software installation. </li>
</ul>
<h3> Mounting the Sensors </h3>
<ul>
<li> Attach the vibration sensors firmly to the machine casing in areas with the highest vibration amplitude, usually close to the bearing supports. </li>
<li> Aim the optical rpm sensor at the rotating shaft and apply a reflective strip to the shaft for phase angle data acquisition. </li>
</ul>
<h3> Software Startup </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Choose the correct balancing method (single or two-plane) according to the rotor configuration and the balancing task. </li>
</ul>
<h3> </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Operate the rotor at its intended working speed. </li>
<li> The program will record the vibration amplitude, rpm, and phase, providing a baseline measurement of the existing imbalance. </li>
</ul>
<h3> Mounting the Test Weight </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Halt the rotation and mount a test weight at a designated position on the rotor, with the weight's value entered into the software (usually in grams). </li>
<li> Restart the rotor, and the software will record the changes in vibration level and phase angle. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Computing the Compensating Weight </h3>
<ul>
<li> Based on the measured data, the software automatically calculates the correction weight parameters: mass and installation angle. </li>
<li> The calculated values are presented on-screen in both numerical and graphical formats. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Attaching the Corrective Mass </h3>
<ul>
<li> Attach the computed compensating weight to the rotor as indicated by the software's output. </li>
<li> You can conduct interim measurements to confirm that the imbalance is decreasing as expected. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Validation and Conclusion of the Balancing Process </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> The balancing procedure is finished if the remaining vibration is within the permissible limits specified in ISO 1940. </li>
<li> If the vibration is still outside acceptable limits, reiterate the process and fine-tune the compensating weight. </li>
</ul>
<h3> Report Generation </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Final Recommendations </h3>
<ul>
<li> Verify the secure attachment of all balancing weights and measurement sensors. </li>
<li> Ensure the rotor rotates smoothly and without excessive noise. </li>
<li> If the rotor operates within a larger assembly, check the functionality and interplay of all interconnected parts. </li>
</ul>
<p> This process allows for precise imbalance correction, reducing vibration and extending equipment life. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Balancing of pulley </a>